
1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.6

1.7

1.7.1

1.7.2

1.7.3

1.8

1.9

1.10

1.10.1

1.10.2

1.10.3

1.11

1.11.1

1.11.2

1.12

1.13

Table	of	Contents
Home

Objectives	&	Prerequisites

Lab	Environment

Overview

What	is	Image	Builder?

Features	&	benefits

Output	image	formats

Interfaces

Image	Builder	API	&	back	end

Image	Builder	CLI

Image	Builder	in	the	web	console

How	to	Install

How	to	Use

Create	blueprints

Customize	blueprints

Create	images

Lab	1

Lab	2

Issues	&	Troubleshooting

Where	to	investigate

Common	issues

Known	issue:	user	accounts

Customize	a	blueprint

Add	SSH	keys	for	root

Add	users

Lab	3

Resources	&	Feedback

1

RHEL	8	Readiness	Training

Image	Builder	(Composer)
Course:	CEE-RL-804
Version:	2.0,	April	2019

How	to	use	this	module:
Look	for	gray	<	and	>	marks	on	either	the	bottom	or	the	left	and	right	sides	of	this	pane,	depending	on	the	size	of	the	window.
Click	those	to	navigate	to	the	previous	or	next	page,	respectively.
Jump	to	a	specific	page	using	the	navigation	links	at	the	left.
Play	audio	for	a	page	using	the	player	at	the	top	of	that	page.	Audio	often	provides	more	complete	information	than	the	text
and	graphics	alone.	A	transcript	is	available	from	a	link	on	the	same	page.

Copyright	©	2019	Red	Hat,	Inc.	Red	Hat,	Red	Hat	Enterprise	Linux,	and	the	Shadowman	logo	are	trademarks	or	registered	trademarks	of	Red	Hat,	Inc.	or	its	subsidiaries	in
the	United	States	and	other	countries.	Linux	is	the	registered	trademark	of	Linus	Torvalds	in	the	U.S.	and	other	countries.

Home

2

Objectives

On	completing	this	training,	you	should	be	able	to:

Define	Image	Builder	in	Red	Hat	Enterprise	Linux	8	and	list	some	of	its	features
Install	and	configure	Image	Builder	and	its	web	console	plugin	in	RHEL	8
Use	Image	Builder	in	the	web	console	to	modify	packages	selected	for	building	images
Customize	a	blueprint	for	post-installation	tasks	like	adding	users	and	SSH	keys
Identify	and	investigate	common	issues	with	Image	Builder

Prerequisites

This	training	assumes	that	you	are	a	Red	Hat	Certified	System	Administrator	(RHCSA)	or	that	you	have	equivalent	experience	with
RHEL.

Show	transcript
Welcome	to	this	training,	RHEL	8	Readiness	Training:	Image	Builder.

On	completing	this	training,	you	should	be	able	to	define	Image	Builder	in	Red	Hat	Enterprise	Linux	8	and	list	some	of	its	features.	You	should	also	be	able	to	install	and
configure	Image	Builder	and	its	web	console	plugin	in	RHEL	8,	and	to	use	Image	Builder	in	the	web	console	to	modify	packages	selected	for	building	images.	You	should
be	able	to	customize	a	blueprint	for	post-installation	tasks	like	adding	users	and	SSH	keys.	In	addition,	you	should	be	able	to	identify	and	investigate	common	issues	with
Image	Builder.

This	training	assumes	that	you	are	a	Red	Hat	Certified	System	Administrator	(RHCSA),	or	that	you	have	equivalent	experience	with	RHEL.

Objectives	&	Prerequisites

3

Lab	Environment
Successful	completion	for	this	training	includes	hands-on	lab	activities	hosted	in	a	cloud-based	lab	environment.

PROVISIONING

(1)	Log	in	to	the	OpenTLC	lab	portal.

(2)	On	the	far	left,	mouse	over	Services	and	select	Catalogs	from	the	pop-up	menu.

(3)	Select	to	expand	All	Services	and	Support	Labs.

(4)	Select	cee-rl-804	under	that	list.

(5)	Select	Order.

(6)	Complete	the	application	request:	read	the	Runtime	Warning,	check	the	box	to	confirm	the	runtime	and	expiration	dates,	and	select
Submit.

IMPORTANT:	Expect	up	to	20	minutes	to	provision	your	lab	environment.

(7)	Look	for	information	on	how	to	access	your	lab	environment	from	one	of	two	places:

Information	email
Look	for	an	email	from	Red	Hat	OPENTLC	<noreply@opentlc.com>	with	the	Subject	similar	to:	Your	Red	Hat	OPENTLC	service
provision	request	for	OTLC-LAB_COMPLETED	has	completed.	This	email	may	arrive	before	the	environment	is	ready	to	use.	If
you	don't	receive	this	email	within	15	minutes,	you	can	generate	a	new	one	from	OpenTLC:	Services	>	Active	Services	>	OTLC-
LAB-NAME*	>	App	Control	>	Status	>	Submit

The	OpenTLC	UI
Look	in	the	Custom	Attributes	section	on	the	right	in	OpenTLC:	Services	>	Active	Services	>	OTLC-LAB-*NAME*

SYSTEM	INFO

System IP Credentials Description

servera.example.com 172.25.250.10 root/redhat Server	to	use	with	the	web	console

SSH	ACCESS

(1)	Use	the	SSH	command	shown	here	to	access	your	environment,	modifying	the	command	based	on	the	information	you	received	by
email:

$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com

(2)	When	prompted,	log	in	to	your	lab	environment	using	one	of	these	options:

A	password	set	by	OpenTLC	and	provided	in	the	information	email.

An	SSH	key	pair	configured	as	described	here:	http://www.opentlc.com/ssh.html

Lab	Environment

4

https://labs.opentlc.com
https://labs.opentlc.com
https://labs.opentlc.com
http://www.opentlc.com/ssh.html

$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com

The	authenticity	of	host	'classroom-guid.red.osp.opentlc.com	(169.47.191.199)'	can't	be	established.

ECDSA	key	fingerprint	is	SHA256:v01n4XWXr0lphfGpBiSSvbasmrlQZul2ntS8g0Kbmdk.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

flastname-redhat.com@classroom-guid.red.osp.opentlc.com's	password:	<PASSWORD>

[flastname-redhat.com@classroom-guid	~]$	sudo	su	-

Last	login:	Thu	Oct	24	14:19:41	EDT	2019	from	61.0.147.106	on	pts/0

[root@classroom-guid	~]#

CONSOLE	ACCESS

If	you	need	console	access	to	any	of	the	machines	in	this	environment,	follow	these	steps:

(1)	Retrieve	the	Master	Console	URL	from	the	information	email	you	received	on	provisioning	your	lab	environment.	Look	for	a	line
that's	similar	to	this	one:

Master	Console:	https://console-redvnc.apps.shared.na.openshift.opentlc.com

(2)	Open	this	console	URL	in	your	web	browser,	and	select	Log	in	with	OpenShift.

(3)	Enter	your	OpenTLC	username	and	password	at	the	OpenShift	login	prompt.

(4)	If	a	dialog	appears	requiring	you	to	Authorize	Access	for	a	service	account,	choose	to	allow	the	selected	permissions	to	continue.

(5)	Select	Access	Console	for	a	given	virtual	machine	to	open	a	VNC	console	session	with	that	system.

LOCAL	WEB	BROWSER	ACCESS	(HOSTED	WEB	UI)

(1)	Use	the	same	ssh	command	from	your	local	system	as	for	command	line	access,	but	add	the	argument	-CfND	8080

[user1@laptop	~]$	ssh	flastname-redhat.com@classroom-guid.red.osp.opentlc.com	-CfnND	8080

(2)	Configure	your	local	web	browser	to	send	all	web	traffic	through	localhost:8080.

[user1@laptop	~]$	google-chrome	--proxy-server="socks5://127.0.0.1:8080"	--host-resolver-rules="MAP	*	0.0.0.0	,	EXCLUDE	localh

ost"	&

Show	transcript
Successful	completion	for	this	training	includes	hands-on	lab	activities.	Use	the	information	on	this	page	to	launch	you	cloud-based	lab	environment,	locate	the	URLs	and
credentials	to	access	that	environment,	familiarize	yourself	with	the	network	setup,	and	use	SSH	or	a	local	web	browser	to	access	lab	systems.

Lab	Environment

5

Image	Builder	Overview

Show	transcript
This	section	provides	an	overview	of	the	Image	Builder	in	RHEL	8,	including	what	it	is	and	its	supported	image	formats.

Overview

6

What	is	Image	Builder?

Image	Builder	is	an	image-building	tool	and	live	bootable	image	creator	introduced	in	RHEL	7.6	and	RHEL	8.

Create	custom	deployable	images	(selected	packages,	post-install	configuration,	etc.)
Customize	images	for	third-party	packages	and	updated	RHEL	Errata	content
Create	images	in	a	variety	of	formats	for	deployment	to	a	variety	of	environments

Image	Builder	was	called	Composer	through	the	RHEL	8	Beta.

Before	Image	Builder:

Creating	customized	RHEL	images	was	unsupported	by	Red	Hat
Clients	and	partners	often	requested	the	ability	to	customize
Customization	grew	in	importance	for	cloud	environments

Show	transcript
What	is	Image	Builder? 	It	is	an	image-building	tool	and	live	bootable	image	creator	introduced	in	RHEL	7.6	and	RHEL	8.	Image	builder	is	used	to	create	custom
deployable	images.	This	customization	can	include	selected	packages,	post-installation	configuration,	and	more.	You	can	also	customize	images	to	have	third-party
packages	and	updated	RHEL	Errata	content.	You	can	create	images	in	a	variety	of	formats	for	deployment	to	a	variety	of	environments.

Note	that	Image	Builder	was	called	"Composer"	through	the	RHEL	8	Beta,	and	the	name	changed	just	prior	to	the	GA	release	of	RHEL	8.	You	will	still	see	package	names,
service	names,	and	artifacts	reflecting	the	"composer"	name.

Before	Image	Builder,	customization	meant	getting	media	from	the	Customer	Portal	and	manually	applying	changes.	This	was	unsupported	by	Red	Hat,	who	only	supported
the	ISO	and	virtual	machines	images	provided	directly	from	the	Customer	Portal.	Clients	and	partners	often	made	feature	requests	to	Red	Hat	seeking	a	supported	ability	to
customize	RHEL	images	for	their	specific	needs.

The	need	for	image	customization	also	grew	in	importance	with	the	increased	use	of	RHEL	in	cloud	environments.	With	Red	Hat's	growth	in	the	cloud	market	came	the	need
for	Red	Hat	to	change	its	approach	to	supporting	custom	RHEL	images.

What	is	Image	Builder?

7

Features	&	benefits

Provides	an	end	user	with	the	ability	to	create	supported	custom	RHEL	images	according	to	their	needs
Reduces	deployment	and	configuration	time	on	public	cloud	services
Supports	various	output	image	formats	for	various	environments
Can	be	used	to	create	images	for	deployment	in	a	disconnected	environment
Output	images	can	be	configured	for	custom	repositories	(diverge	from	the	Red	Hat	Content	Delivery	Network	defaults)
Provides	package	selection	and	configuration	from	a	user-friendly	web	UI	in	the	RHEL	8	web	console
Allows	users	to	save	and	alter	image	configuration	to	create	multiple	replicas	with	a	few	clicks

Show	transcript
Listed	here	are	some	of	the	features	and	benefits	of	Image	Builder	in	RHEL	8.	Image	Builder	provides	an	end	user	with	the	ability	to	create	supported	custom	RHEL	images
according	to	their	needs.	As	discussed	in	upcoming	pages,	Image	Builder	takes	the	names	of	the	packages	a	user	wants	to	install	and	creates	a	bootable	RHEL	image	file	that
has	those	packages	pre-installed.	It	is	designed	to	save	customers	time	in	both	creating	custom	images	and	deploying	those	images	in	specific	environments.

Because	of	its	features,	Image	Builder	reduces	the	deployment	and	configuration	time	on	public	cloud	services.	It	also	supports	various	output	image	formats	for	various
environments.	For	customers	with	secure	or	offline	environments,	Image	Builder	can	be	used	to	create	images	with	the	latest	packages	and	errata	for	deployment	in	those
disconnected	environments.

Image	Builder's	output	images	can	be	configured	for	custom	repositories	that	diverge	from	the	Red	Hat	Content	Delivery	Network	defaults.

Image	Builder	provides	package	selection	and	configuration	from	a	user-friendly	web	UI	in	the	RHEL	8	web	console.	See	a	separate	training	in	this	series	for	more	about	the
RHEL	8	web	console.	This	UI	allows	users	to	save	and	alter	image	configuration	to	create	multiple	replicas	with	a	few	clicks.

Features	&	benefits

8

Output	image	formats

Image	Builder	allows	you	to	build	custom	images	in	a	various	formats,	including:

Raw	disk	(.img)
Live	ISO	(.iso)
File	system	(.img)
Tarball	(.tar.xz)
VMDK	(VMware®	vSphere®	Hypervisor)
AMI	(Amazon	Web	Services®)
VHD	(Microsoft®	Azure®)
qcow2	for	KVM,	Red	Hat	Virtualization,	Red	Hat	Satellite,	and	Red	Hat	CloudForms
qcow2	for	OpenStack

Show	transcript
Listed	here	are	the	image	formats	you	can	output	from	Image	Builder.	This	includes	raw	disk	images,	live	ISO	images,	file	system	images,	and	tarball	images.	Also	listed	are
common	virtual	and	cloud	formats	for	specific	platforms:	VMDK	for	the	VMware	vSphere	Hypervisor,	AMI	for	Amazon	Web	Services,	VHD	for	Microsoft	Azure,	and	qcow2
for	KVM,	Red	Hat	Virtualization,	Satellite,	and	CloudForms.	There	is	also	a	separate	qcow2	optimized	for	OpenStack.

All	of	the	virtual	machine	images	created	using	Image	Builder	are	partitioned	and	pre-installed	with	the	correct	packages.	They	are	also	pre-configured	with	the	correct
services	and	include	the	custom	configuration	files	that	support	that	specific	virtual	or	cloud	environment.	These	images	can	be	directly	deployed	to	their	respective	virtual
and	cloud	environments	for	a	variety	of	deployment	use	cases.

Output	image	formats

9

Image	Builder	Interfaces

Show	transcript
This	section	covers	details	about	the	Image	Builder	interfaces	in	RHEL	8.

Interfaces

10

Image	Builder	API	&	back	end

Image	Builder	is	an	application	programming	interface	(API)	server	for	building	disk	images.
Image	Builder	provides	its	functionality	through	API	endpoints.
Two	front-end	tools	use	this	API:

Command-line	interface	(composer-cli)
Plugin	for	the	RHEL	8	web	console	(cockpit-composer)

Behind	the	API:	Image	Builder	uses	the	Lorax	and	livemedia-creator	tool,	which	uses	Anaconda	and	other	utilities	to	create	images:

Image	Builder	API	&	back	end

11

Show	transcript
Image	Builder	is	actually	an	application	programming	interface	server	for	building	disk	images.	It	provides	its	functionality	through	callable	API	endpoints.	Two	front-end
tools	use	this	API:	a	command	line	interface,	and	a	plugin	for	the	RHEL	8	web	console.

Image	Builder	API	&	back	end

12

As	you	see	here,	the	package	names	"composer-cli"	and	"cockpit-composer"	reflect	older	names	for	both	the	Image	Builder	and	the	web	console.	It's	also	possible	to	create	a
custom	front-end	for	calling	these	API	endpoints.

Behind	the	API,	Image	Builder	uses	the	Lorax	and	"livemedia-creator"	tool,	which,	in	turn,	uses	Anaconda	and	other	utilities	to	create	images.	The	diagram	here	shows	how
all	these	parts	work	together.

Image	Builder	API	&	back	end

13

Image	Builder	CLI

Command:	composer-cli
Provides	a	command-line	interface	for	using	Image	Builder
Has	some	functions	that	are	only	available	in	the	CLI	(e.g.	post-install	configuration)

To	get	help	on	how	to	use	composer-cli:

composer-cli	-h

Show	transcript
The	Image	Builder	CLI	provides	a	command	line	interface	for	using	Image	Builder.	Some	functions	are	only	available	in	the	CLI,	such	as	adding	a	post-install	configuration.

With	the	CLI	installed,	you	can	use	the	command	shown	here	to	output	a	help	page	for	the	"composer-cli"	command.

Image	Builder	CLI

14

Image	Builder	plugin	for	the	RHEL	8	web	console

Plugin:	cockpit-composer
A	GUI	for	Image	Builder	within	the	RHEL	8	web	console
Allows	using	Image	Builder	remotely	from	a	web	interface
Does	not	require	having	the	GUI	packages	installed	on	the	RHEL	system
Currently:	the	Image	Builder	functions	available	in	the	web	console	are	more	limited	than	in	the	CLI

Click	the	image	to	see	at	full	size:

Note

The	default	port	to	access	the	web	console	is	9090.	This	lab	setup	uses	custom	port	settings	to	address	limitations	and	security.
Remember	to	use	port	9090	in	a	default	install.

Show	transcript
The	cockpit-composer	plugin	provides	a	GUI	for	Image	Builder	within	the	RHEL	8	web	console.	This	interface	allows	for	using	Image	Builder	remotely	from	a	web	browser
interface.	Note	again	that	there	is	a	separate	training	in	this	series	on	the	RHEL	8	web	console,	which	includes	how	to	set	that	up	on	a	RHEL	system.	The	web	console	is
already	set	up	for	you	in	your	labs	for	this	training.

As	a	web	application,	this	plugin	does	not	require	that	you	have	the	GUI	packages	installed	on	a	RHEL	8	system	in	order	to	access	it.

As	of	this	writing,	the	Image	Builder	functions	available	through	the	web	console	are	more	limited	than	in	the	Image	Builder	CLI.

The	image	here	shows	what	the	Image	Builder	looks	like	within	the	web	console.	This	view	shows	a	list	of	blueprints	inside	the	Image	Builder.	The	next	section	covers	more
about	blueprints.

Read	the	note	on	this	page	about	the	port	access	for	the	web	console	used	in	this	training.	Then,	go	on	to	the	next	page.

Image	Builder	in	the	web	console

15

How	to	Install	Image	Builder
Before	installing	Composer,	ensure	that	you	have:

Installed	RHEL	8
Enabled	networking
Registered	the	system	and	attached	a	valid	subscription

Install	composer	with	both	the	CLI	and	the	web	console	plugin:

#	yum	install	lorax	lorax-composer	composer-cli	cockpit-composer

Recall:	Lorax	is	a	back-end	tool	that	Image	Builder	uses	to	create	Anaconda	install	images.

Enable	and	start	the	lorax-composer	service:

#	systemctl	enable	--now	lorax-composer.socket

Restart	the	cockpit	service	to	load	the	newly	installed	Image	Builder	plugin	in	the	web	console:

#	systemctl	restart	cockpit.service

Note

If	you	use	the	terminal	in	the	web	console	to	restart	cockpit.service,	you	will	be	disconnected	from	the	console.	Log	in	again	after	the
service	restart	to	resume	using	the	console.

Show	transcript
Before	installing	the	Image	Builder,	ensure	that	you	have	installed	RHEL	8,	enabled	networking,	registered	the	system,	and	attached	a	valid	subscription.	To	install	Image
Builder	with	both	the	command	line	interface	and	the	web	console	plugin,	use	the	first	command	shown	here.	Notice	the	"lorax"	packages	in	the	command,	and	recall	that
Lorax	is	a	back-end	tool	that	Image	Builder	uses	to	create	Anaconda	install	images.

After	install,	use	the	second	command	to	enable	and	start	the	"lorax-composer"	service.	Keep	this	service	name	in	mind	when	you	need	to	support	Image	Builder.

Then	wrap	up	the	install	by	restarting	the	"cockpit"	service	so	that	it	loads	the	newly	installed	Image	Builder	plugin	in	the	web	console.	As	noted	here,	if	you	run	this	from
the	terminal	inside	the	web	console,	you'll	be	disconnected,	and	you'll	need	to	log	in	to	the	console	again.

How	to	Install

16

How	to	Use	Image	Builder

Show	transcript
This	section	covers	how	to	use	Image	Builder	to	create	custom	RHEL	8	images	in	various	formats.

How	to	Use

17

Create	blueprints

Blueprint	=	a	list	of	preselected	components	(RPM	packages	and	software	groups)	that	form	a	template	for	a	custom	image
Create	multiple	images	in	multiple	supported	formats	from	the	same	blueprint
A	blueprint	saves	a	record	of	the	inputs	and	instructions	for	an	image	build

Click	the	image	to	see	at	full	size:

Show	transcript
When	an	infrastructure	administrator	realizes	that	an	application	needs	to	be	added	to	that	infrastructure,	they	can	use	Image	Builder	to	design	a	single	system	to	deploy	that
application,	and	to	generate	images	that	can	be	used	to	install	as	many	of	those	systems	as	needed.	The	feature	that	holds	that	customized	plan	for	the	system	is	called	a
blueprint	or	recipe.

A	blueprint	is	a	list	of	preselected	components	for	a	system	that	forms	the	template	for	a	custom	image.	These	components	consist	of	packages	or	software	groups.

You	can	create	multiple	images	in	multiple	supported	formats	from	the	same	blueprint.	A	blueprint	saves	a	record	of	the	inputs	and	instructions	for	an	image	build	so	it	can	be
reproduced	at	a	later	date.

The	image	on	this	page	shows	what	the	list	of	blueprints	looks	like	in	the	web	console	interface.	The	"Image	Builder"	navigation	sidebar	option	presents	an	overview,	which
lists	the	blueprints	that	are	already	configured.	A	few	blueprints	are	provided	by	default,	and	those	are	shown	here.	Notice	that	there	are	buttons	for	each	blueprint	to	edit
the	blueprint	or	to	create	a	new	image	based	on	that	blueprint.

Create	blueprints

18

Customize	blueprints

Create	Blueprint	opens	the	interface	shown	here
Select	components	to	customize	the	system
A	component	can	be	either	an	RPM	package	or	a	Yum	module
Click	Commit	to	save	that	blueprint
Edit	the	blueprint	as	needed	to	add	or	remove	components

Click	the	image	to	see	at	full	size:

Note

Recall	that	post-installation	configuration	is	not	yet	implemented	in	the	web	console	interface	for	Image	Builder.

Show	transcript
Click	"Create	Blueprint"	in	the	Image	Builder	interface	to	open	the	page	shown	in	the	screenshot	here.	On	this	page,	you	can	select	components	to	customize	the	system.	A
component	can	be	either	an	RPM	package	or	a	Yum	module.	If	you're	not	familiar	with	Yum	modules,	look	for	the	training	on	Yum	4	features	and	modules	as	part	of	this
RHEL	8	Readiness	Training	series.

After	making	your	selections,	click	"Commit"	to	save	the	new	blueprint.	From	here,	you	can	edit	the	blueprint	as	needed	without	starting	over,	including	adding	and
removing	components.

In	the	screenshot	here,	notice	that	when	you	mouse	over	the	"plus"	sign	for	a	selected	component	on	the	left,	it	indicates	the	version	and	release	for	that	component,	which	is
locked	in	unless	you	choose	a	different	version	and	release.

Recall	from	earlier	that	post-installation	configuration	is	not	yet	implemented	in	the	web	console	interface	for	Image	Builder.	That	requires	using	the	CLI,	and	it's	covered
later	in	this	training.

Customize	blueprints

19

Create	images

After	creating	a	blueprint,	you	can	create	images	based	on	that	blueprint
The	pages	for	viewing	and	for	editing	a	blueprint	each	include	a	button	to	build	an	image
Image	Builder	allows	building	any	of	the	supported	images	from	a	blueprint

Click	the	image	to	see	at	full	size:

Show	transcript
After	creating	a	blueprint,	you	can	create	images	based	on	that	blueprint.	The	previous	pages,	which	show	screenshots	of	viewing	and	editing	a	blueprint,	each	have	a
button	for	building	an	image	from	the	selected	blueprint.	Image	Builder	allows	building	any	of	the	supported	image	types	mentioned	earlier	from	a	blueprint.

The	image	here	shows	selecting	the	output	file	format	for	the	image	you	want	to	build.

Create	images

20

Lab	1

In	this	lab,	you	will	create	one	blueprint	and	one	tar	image	using	that	blueprint.	This	lab	is	configured	with	a	local	repository,	so	there	is
no	need	to	register	the	system	to	install	packages.

To	successfully	complete	this	activity,	you	must:

Install	lorax-composer,	cockpit-composer,	and	their	dependencies	on	servera.example.com	https://servera-
64a3.red.osp.opentlc.com:9090/.
Create	a	blueprint	called	composer-test	in	the	web	console.
Add	the	bison	package	to	the	composer-test	blueprint.
Create	a	tar	image	using	the	composer-test	blueprint.	Please	note	that	image	creation	takes	more	than	five	minutes.

The	following	video	demonstrates	these	steps.	You	can	follow	along	using	your	RHEL	8	web	console	as	described	in	the	Lab
Environment	setup	page.

NOTE:	Use	port	9090	to	connect	to	the	cockpit.service	running	in	your	lab	environment.	The	full	URL	to	use	depends	upon
the	FQDN	provisioned	by	OpenTLC.	The	FQDN	for	your	server	will	be	listed	in	the	Environment	Info	under	the	Custom
Attributes.	For	example,	https://servera-64a3.red.osp.opentlc.com:9090/

Right	click	and	maximize	the	video	as	needed	to	see	details.

When	the	image	build	is	complete,	access	a	servera	terminal	and	run	the	following	command	as	root:

#	./kc-rl-804.sh	grade1

Submit	the	completion	code	from	that	output	as	prompted	here:

Completion	code	for	Lab	1:	______

ans:	OMIT

Lab	1

21

https://servera-64a3.red.osp.opentlc.com:9090/
https://servera-64a3.red.osp.opentlc.com:9090/

Lab	2

In	this	lab,	you	will	edit	your	previously	created	blueprint	to	add	and	remove	packages.	Then,	you	will	create	a	qcow2	image	using	that
modified	blueprint.

To	successfully	complete	this	activity,	you	must:

Open	the	composer-test	blueprint	for	editing.
Remove	the	bison	package.
Add	these	packages:	findutils,	diffutils,	pciutils
Create	a	qcow2	image	for	KVM	using	the	composer-test	blueprint.

The	following	video	demonstrates	these	steps.	You	can	follow	along	using	your	web	console	as	described	in	the	Lab	Environment	setup
page.

Right	click	and	Maximize	the	video	as	needed	to	see	details.

When	the	image	build	is	complete,	access	a	servera	terminal	and	run	the	following	command	as	root:

#	./kc-rl-804.sh	grade2

Submit	the	completion	code	from	that	output	as	prompted	here:

Completion	code	for	Lab	2:	______

ans:	OMIT

OPTIONAL:
Notice	that	when	the	image	build	is	complete,	the	status	is	shown	as	Complete,	and	the	Download	button	is	enabled.	If	you	are	running
Linux	in	your	local	system	with	virtualization	software	installed	(e.g.	virt-install	and	virt-viewer	in	RHEL	or	Fedora),	then	you	can
download	the	image	file	from	your	browser	and	test	it	from	your	local	system.	For	virt-install,	test	the	image	using	the	following
command:

#	virt-install	--name	RHEL8Lab2	--memory	2048	--vcpus	2	--os-variant	rhel8.0	--import	--disk		<path	to	downloaded	qcow2	file>

This	command	should	open	a	virt-viewer	window	with	the	text-based	login	prompt.	You	won't	be	able	to	log	in	at	this	point,	but	the
reason	and	solution	for	this	is	covered	in	the	next	section.

Lab	2

22

Issues	&	Troubleshooting

Show	transcript
This	section	provides	information	about	common	issues	with	Image	Builder	and	how	to	troubleshoot	Image	Builder	issues.

Issues	&	Troubleshooting

23

Where	to	investigate	Image	Builder	issues

Configuration	file:
/etc/lorax/composer.conf

Log	files:
/var/log/lorax-composer/composer.log
/var/log/lorax-composer/dnf.log
/var/log/lorax-composer/program.log
/var/log/lorax-composer/server.log

Check	the	status	and	error	messages	for	the	lorax-composer	service:

systemctl	status	lorax-composer.service

Get	detailed	logs	about	the	lorax-composer	service:

journalctl	-fu	lorax-composer

Get	a	list	of	blueprints:

composer-cli	blueprints	list

Confirm	whether	Image	Builder	is	getting	the	Yum	(DNF)	sources	correctly	and	not	using	a	third-party	image:

composer-cli	sources	list

Show	transcript
This	page	covers	data	to	collect	when	investigating	Image	Builder	issues.	The	configuration	file	and	log	files	are	listed	here	along	with	a	command	that	shows	the	status	and
errors	for	the	"lorax-composer"	service.	The	log	files	mentioned	here	are	collected	by	default	with	Sosreport	in	RHEL	8.	The	last	two	commands	shown	here	are	"composer-cli"
commands	used	to	get	list	of	the	blueprints	and	configured	repository	resources	in	Image	Builder.	Sosreport	collects	these	and	other	troubleshooting	commands	under	the
"sos_commands/composer"	directory	of	its	report.

Where	to	investigate

24

Common	issues

Misconfigured	repository	sources

lorax-composer.socket	is	not	enabled
Error	message	in	the	web	console:	'An	error	occurred.	not-found'

Old	version	of	Image	Builder	needed	SELinux	needs	to	be	Permissive

This	is	fixed	in	the	latest	version
Bug	addressing	this	limitation:	https://bugzilla.redhat.com/show_bug.cgi?id=1645189

Show	transcript
This	page	lists	some	common	issues	you	might	have	to	address	when	working	with	or	supporting	Image	Builder.	As	more	Red	Hat	customers	adopt	this	feature	and
encounter	other	issues	over	time,	this	list	may	grow.

One	common	issue	is	that	Image	Builder	has	misconfigured	repository	sources.	The	source	list	mentioned	previously	is	important	for	identifying	this	issue.

Another	issue	that	"lorax-composer.socket"	is	not	enabled.	This	condition	results	in	the	error	message	shown	here	in	the	web	console.

Older	versions	of	Image	Builder	needed	to	have	SELinux	in	permissive	mode.	This	was	a	limitation,	and	it	has	been	fixed	in	the	latest	versions	of	Image	Builder.	If	you	think
you	may	be	seeing	this,	though,	see	the	bug	linked	here	for	more	information	about	this	limitation.

Common	issues

25

https://bugzilla.redhat.com/show_bug.cgi?id=1645189

Known	issue:	user	accounts	on	images	generated	from	the	web
console

Images	created	with	Image	Builder	in	the	web	console:

Have	their	root	account	locked	for	security	purposes
By	default,	do	not	have	any	other	users	configured
Cannot	have	a	user	added	using	just	the	web	console	(requires	the	CLI)

This	results	in	images	that	have	no	way	to	log	in.

Workaround	for	clouds	only:

Deploy	the	image	on	a	cloud	and	use	cloud_init	to	add	new	users	to	them.
See	RHEL	8	Beta	documentation	for	vendor-specific	instructions:
Installing	and	deploying	RHEL	(RHEL	8),	Chapter	7,	"Creating	Cloud	Images	With	Composer"

Workaround	for	qcow2	images	only:

Mount	the	qcow2	image	offline	using	this	knowledge	base	article	and	remove	or	change	the	password:	Changing	the	password	on
the	RHEL	7	kvm	qcow2	download

Otherwise	use	the	Image	Builder	CLI	(composer-cli)	or	edit	blueprints	manually.

Track	this	bug:	Bug	1655862	-	Option	to	include	username	or	custom	settings	in	the	blueprint

Note

You	can	view	some	screen	captures	of	a	proposed	fix	here	on	GitHub.	The	final	fix	released	in	RHEL	may	differ	from	this	proposal.

Show	transcript
Though	the	images	you	created	in	your	earlier	labs	were	bootable,	they	were	practically	unusable	because	the	root	account	is	locked	and	no	other	users	were	added	to	the
images.

On	images	created	with	Image	Builder	in	the	web	console,	the	root	account	is	locked	for	security	purposes	and,	by	default,	they	do	not	have	any	other	users	configured.
Also,	because	of	the	web	console's	current	limitations,	you	cannot	add	a	user	to	the	blueprint	using	just	the	web	console.	This	results	in	images	that	have	no	way	to	log	in.

In	cloud	environments,	you	can	make	these	images	usable	by	using	"cloud_init"	to	add	new	users	to	them.	The	steps	to	accomplish	this	are	vendor-specific,	so	see	the	RHEL
8	Beta	documentation	link	here	about	how	to	add	cloud	images	in	their	respective	environments.

Without	cloud_init,	there	is	no	other	way	to	add	users	in	images	created	entirely	from	the	web	console.	This	function	is	planned	for	a	future	release	to	follow	soon	after	the
RHEL	8	GA	release.	In	the	meantime,	Image	Builder	users	should	use	the	CLI	to	add	users	to	an	image,	or	modify	a	blueprint's	configuration	file	manually.	The	next	section
covers	how	to	do	this.

Known	issue:	user	accounts

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8-beta/html/installing_and_deploying_rhel/creating-cloud-images-with-composer_graphical-installation
https://access.redhat.com/discussions/664843
https://bugzilla.redhat.com/show_bug.cgi?id=1655862
https://github.com/weldr/welder-web/pull/594

Customize	a	blueprint

To	customize	a	blueprint:

1.	Download	a	copy	of	the	blueprint	configuration	file	from	Image	Builder:

composer-cli	blueprints	save	<blueprint-name>

2.	Edit	that	file	using	file	editor	like	vi	(e.g.	blueprint-name.toml).

3.	Push	the	revised	blueprint	configuration	file	back	to	Image	Builder:

composer-cli	blueprints	push	<blueprint-name.toml>

4.	Verify	that	your	changes	appear	in	the	configuration	file	using	this	command:

composer-cli	blueprints	show	<blueprint-name>

In	your	labs	for	this	training,	replace	<blueprint-name>	with	composer-test.

Blueprint	configuration	files	follow	TOML	(Tom's	Obvious,	Minimal	Language)	format,	which	uses	key/value	pairs.	For	more
information,	see	TOML	on	GitHub.

Show	transcript
To	customize	a	blueprint,	download	a	copy	of	the	blueprint	configuration	file	from	Image	Builder,	edit	that	file,	and	then	push	the	revised	blueprint	configuration	file	back	to
Image	Builder.	The	command	syntax	for	downloading	and	pushing	are	shown	here.

Blueprint	configuration	files	follow	"Tom's	Obvious,	Minimal	Language"	format,	which	uses	key/value	pairs.	For	more	information,	see	the	GitHub	link	here.	The	next	couple
of	pages	include	some	examples,	also.

Customize	a	blueprint

27

https://github.com/toml-lang/toml

Add	SSH	keys	for	root

Append	lines	to	the	blueprint	configuration	file	to	add	SSH	keys	for	a	user.

SSH	keys	for	the	root	user:

[[customizations.sshkey]]

user	=	"root"

key	=	"<public	SSH	key>"

If	you	copy	the	contents	of	your	personal	public	key	file	(e.g.	.ssh/id_rsa.pub)	to	the	value	of	key,	you	should	be	able	to	use	SSH	to	log
in	as	root	on	systems	launched	from	the	resulting	image.

Show	transcript
You	should	already	know	that	SSH	key	authentication	is	more	secure	than	standard	password-based	authentication.	When	you	want	to	add	SSH	keys	for	the	root	user	to	an
image	created	by	Image	Builder,	edit	its	blueprint	configuration	file	to	add	the	lines	shown	here.	If	you	copy	the	contents	of	your	personal	public	key	file	to	the	value	of
"key",	you	should	be	able	to	use	SSH	to	log	in	as	root	on	systems	launched	from	the	resulting	image.

Add	SSH	keys	for	root

28

Add	users

Append	lines	to	the	blueprint	configuration	file	to	add	a	new	user.

New	user	myuser:

[[customizations.user]]

name	=	"myuser"

password	=	"<password	in	plain	text	OR	an	encrypted	password	string>"

key	=	"<public	SSH	key>"

shell	=	"/usr/bin/bash"

groups	=	["users",	"wheel"]

uid	=	1001

gid	=	1001

To	generate	encrypted	password	string:

python3	-c	"import	crypt,	getpass;	print(crypt.crypt(getpass.getpass(),	crypt.METHOD_SHA512))"

Note

Demonstration	of	editing	a	blueprint	configuration:
RHEL	8	Beta	-	Building	Custom	RHEL	Images	With	Image	Builder	(Composer)	(YouTube)

Show	transcript
Similar	to	adding	SSH	keys	for	the	root	user,	you	can	add	a	new	user	by	adding	lines	to	the	blueprint	configuration	file.	Edit	the	file	to	add	the	lines	shown	here.	You	can
provide	the	password	in	plain	text	or	as	an	encrypted	password	string.	We've	provided	a	Python	command	you	can	run	on	a	RHEL	system	if	you	want	to	generate	an
encrypted	password	string	for	this	field.	Also	notice	that	you	can	paste	a	public	SSH	key	here	as	described	on	the	previous	page.

You	should	recognize	that	not	all	of	these	fields	are	required	to	create	a	new	user	in	Linux.	If	desired,	you	could	just	provide	the	username	and	password.

For	a	demonstration	of	editing	a	blueprint	to	add	users	and	SSH	keys,	see	the	video	linked	here	from	Red	Hat's	YouTube	channel.

Add	users

29

https://youtu.be/UopGqYs0PKA?t=253

Lab	3

In	this	lab,	you	will	modify	the	composer-test	blueprint	configuration	file	to	add	new	user	user1	and	to	add	a	public	SSH	key	for	the
root	user.	Then,	you	will	create	a	qcow2	image	using	that	modified	blueprint.

To	successfully	complete	this	activity,	you	must:

Save	the	composer-test	blueprint	to	/root	on	your	servera	system	using	the	composer-cli	command.
Configure	a	new	user	user1	with	password	pass1,	and	that	user	belongs	to	the	wheel	and	users	groups.
Configure	an	SSH	key	for	the	root	user.	You	can	find	your	root	user's	public	key	file	on	servera	at	/root/.ssh/composer_rsa.pub.
Push	the	modified	composer-test	blueprint,	and	confirm	that	your	changes	are	applied.
Use	the	RHEL	8	web	console	to	create	a	QEMU	qcow2	Image	(.qcow2)	using	the	composer-test	blueprint.

The	resulting	image	build	should	then	have	user1	with	sudo	access	(because	of	the	wheel	group),	and	it	allows	SSH	for	the	root	user	with
the	correct	key	authentication.

When	the	image	build	is	complete,	access	a	servera	terminal	and	run	the	following	command	as	root:

#	./kc-rl-804.sh	grade3

Submit	the	completion	code	from	that	output	as	prompted	here:

Completion	code	for	Lab	3:	______

ans:	OMIT

OPTIONAL:
Like	in	Lab	2,	you	have	the	option	to	download	and	test	this	image	on	your	local	system.	If	you	are	running	Linux	with	virt-install,	use
the	following	command	to	test	the	image:

#	virt-install	--name	RHEL8Lab3	--memory	2048	--vcpus	2	--os-variant	rhel8.0	--import	--disk		<path	to	downloaded	qcow2	file>

This	command	should	open	a	virt-viewer	window	with	the	text-based	login	prompt.	This	time,	you	should	be	able	to	test	the	user	login
options	you	configured:

Log	in	as	user1	with	password	pass1.
Confirm	that	user1	is	a	member	of	both	the	users	and	wheel	groups	by	running	the	id	command.
Confirm	that	user1	is	able	to	run	privileged	commands	with	sudo.

Lab	3

30

Not	at	all	Likely 0 1 2 3 4 5 6 7 8 9 10 Extremely	likely

Resources

Weldr	Lorax	composer	homepage

Cockpit	project	homepage

Lorax	upstream	project	(GitHub)

Red	Hat	developer	blog	on	Composer

Feedback

Thank	you	for	taking	time	to	provide	feedback	about	this	training	using	the	form	below.

How	likely	are	you	to	recommend	this	training	module	to	other	associates?

Enter	additional	comments	here...

Submit	FeedbackReset

Resources	&	Feedback

31

https://weldr.io/lorax/intro.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8-beta/html/managing_systems_using_the_cockpit_web_interface/
https://github.com/weldr/lorax
https://developers.redhat.com/blog/2019/03/28/red-hat-enterprise-linux-8-image-builder-building-custom-system-images/

	Home
	Objectives & Prerequisites
	Lab Environment
	Overview
	What is Image Builder?
	Features & benefits
	Output image formats

	Interfaces
	Image Builder API & back end
	Image Builder CLI
	Image Builder in the web console

	How to Install
	How to Use
	Create blueprints
	Customize blueprints
	Create images

	Lab 1
	Lab 2
	Issues & Troubleshooting
	Where to investigate
	Common issues
	Known issue: user accounts

	Customize a blueprint
	Add SSH keys for root
	Add users

	Lab 3
	Resources & Feedback

